Hackaday

Syndicate content Hackaday
Fresh hacks every day
ถูกปรับปรุง 4 hours 3 sec ก่อน

Bring A Hack at World Maker Faire 2014

เสาร์, 09/27/2014 - 03:00

After a hard Saturday at World Maker Faire, some of the best and brightest in the Hacker/Maker community descended on The Holiday Inn for “Bring A Hack”. Created by [Jeri Ellsworth] several years ago at the Bay Area Maker Faire, Bring A Hack (BAH) is an informal gathering. Sometimes a dinner, sometimes a group getting together at a local bar, BAH is has just one rule: You have to bring a hack!

[Sophi Kravitz] has become the unofficial event organizer for BAH in New York. This year she did a bit of live hacking, as she converted her Wobble Wonder headgear from wired to wireless control.

[Chris Gammell] brought his original Bench BudEE from Contextual Electronics. He showed off a few of his board customizations, including making a TSSOP part fit on the wrong footprint.

[Windell and Lenore] from Evil Mad Scientist Laboratories brought a few hacks along. They picked up an old Radio Shack music player chip at the Electronics Flea Market and built it up on a breadboard. Also on display was their new EggBot Pro. The Pro is a beautifully machined version of the eggbot. Everything is built strong to withstand the sort of duty an EggBot would see at a hackerspace or public library. [Windell] was full of surprises, as he also gave everyone chunks of Sal Ammoniac, which is a great way to bring the tin back to a tired soldering iron tip. The hack was that he found his Sal Ammoniac at a local Indian grocery in the Bay Area. Check out [Windell's] blog entry for more information.

[Cal Howard] brought his DIY VR goggles. [Cal] converted a Kindle Fire into an Oculus Rift style head mounted display by adding a couple of magnifying lenses, some bamboo kebab sticks to hold the lenses in place. Judicious use of cardboard and duct tape completed the project. His current hurdle is getting past the Fire’s lack of an accelerometer. [Cal] planned to spend Sunday at Maker Faire adding one of his own!

As the hour grew late, everyone started to trickle out. Tired but happy from a long day at Maker Faire, the Bring A Hacker partygoers headed back to their hotels to get some sleep before World Maker Faire’s final day.


Filed under: classic hacks

Countdown to Finals

เสาร์, 09/27/2014 - 01:31

There can be only 5.

This Sunday Night we will snapshot the state of the final 50 entries for The Hackaday Prize. Our panel of Launch Judges will then begin the difficult task of choosing the five projects which best exemplify the virtues of the challenge: Openness, Connectedness, Innovation, Wow Factor, Reproducibility, and User Experience.

Want to help your favorite project make the finals? Get in there and take a look at their write-ups. Leave a polite comment on the project page that mentions the parts that are unclear or things you think should be added to the description.

The five who do move on are up for some huge prizes: A trip to space, Milling Machine, a 3D Printer, a trip to Akihabara, and Team Skydiving. Of course we won’t know the order of the finalists or who the Grand Prize Winner is until the final judging round happens at the end of October.


Filed under: The Hackaday Prize

Hacklet 17 – Keyboards

เสาร์, 09/27/2014 - 00:00

This week on The Hacklet we’re featuring some of the best keyboard hacks from Hackaday.io!

Hackers are really into their keyboards. Everyone has a favorite, and those favorites vary wildly. Mechanical, soft touch, ergonomic, QWERTY, DVORAK, chorded, you name it, there is a hacker, maker, or engineer who loves it, or absolutely hates it. For some, no commercial product is perfect. All is not lost though, as a custom keyboard is just a hack away!

[Warren Janssens] gets things rolling with Ergo60, his 60 key ergonomic keyboard. [Warren's] layout is a pair of 25 key hand clusters, each with a matching 5 key thumb cluster. This layout minimizes lateral wrist movement. With the reduced key count and stacked keys, the user’s hands never move from the home row. [Warren] rolled his own PCBs for Ergo60. A Teensy 2.0 running a fork of TMK serves as Ergo60’s controller. [Warren's] is running Cherry Black switches and his keycaps are from Signature Plastics. [Warren] is using Ergo60 as his daily driver these days, so it’s no surprise that he’s set the “Completed Project” tag.

Some say he needs no keyboard at all, and that his heartbeat sounds just like an IBM Model M. All we know is he’s called [Brian Benchoff]. [Brian's] created a pair of minimalist keyboard projects. The Unhappy Hacking Keyboard takes us back to basics. After all, computers run on 1’s and 0’s, right? What more could a person need? Apparently just a space and return. Unhappy Hacking Keyboard uses an ATtiny85 with V-USB as the controller and the interface. Keys are cherry MX blues. The keycaps are [Brian's] own Hackaday Cherry MX Keycaps printed by Shapeways.

An entire generation of hackers don’t know the joy of typing on a tiny rubber keyboard. [Alistair MacDonald] aimed to fix that, so he turned an old computer into a keyboard with his ZX Keyboard. [Alistair] started with a broken ZX Spectrum. He gutted the original electronics and added an Ardunio Pro Mini running the V-USB library. [Alistair] directly wired the row and column I/O lines from the keyboard to his Arduino. The result is a keyboard which is the perfect size for cell phones, Raspberry Pi’s and the like.

[Servo] teaches us new ways to type with Chordy KEY, his chording keyboard project. Chordy Key is meant to be used in the left hand. Five finger buttons and three thumb buttons are all that is needed to chord out 64 different letters and symbols. [Servo] utilized an ATmega32U4 powered Sparkfun pro micro to control his keyboard. Chordy Key is a proof of concept, but with [Servos's] use of 3D printed parts, Chordy Key looks like it’s ready for your next wearable computing project!

[jmptable] is also working on a chorded keyboard design. Chord Keyboard uses only 7 keys to send the entire ASCII character set and a few control combinations. [jmptable] used an ATmega328P as his processor. Chord keyboard isn’t wired though. An RN-42-HID module provides bluetooth connectivity to the world.

[jmptable] has provided an amazing amount of detail on his research, including one of his goals of adding a chorded keyboard to the Gameboy Advance. They keyboard itself would be mounted on the spine of a game cartridge. We would love to see that idea come to fruition, [Servo]!

 

Finally we have [Gertlex], who just wanted a scroll wheel embedded in his keyboard. He got there with the help of an Apple Mighty Mouse. Keyboard with Apple Mouse Scroll Ball is one of those hacks that looks like it original equipment. [Gertlex] took a drill to a Targus slim USB keyboard, putting a small hole right between the ESC and F1 keys. He fit the scroll ball from his Apple Mighty Mouse in the hole. Electronics are as simple as plugging the mouse and keyboard into the same USB hub. The only downside to the design is that [Gertlex's] keyboard doesn’t recognize fast enough to send key presses during the boot process.

That’s just about enough keystrokes for this episode of The Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!


Filed under: Hackaday Columns, peripherals hacks

We’re at Maker Faire Atlanta, Oct 4-5

ศุกร์, 09/26/2014 - 22:30

If you live in the southeastern US, mark your calenders for next weekend—October 4th and 5th—and head out to the fourth annual Maker Faire Atlanta in downtown Decatur, GA. You can find a complete list of participants here.

I’ll be around all weekend to talk to makers about their projects and to hand out some Hackaday stickers. As [Brian] said with the HaD crew at the NY Faire, don’t be afraid to introduce yourself if you see me walking around or lurking at the Hackyard booth. See you there!


Filed under: cons

Starting to Wrap Up Maker Faire

ศุกร์, 09/26/2014 - 21:00

It’s almost a week since the NYC Maker Faire, and it’s about time for us to start wrapping up all the posts we’re doing on everything we’ve seen.

[Chris Mitchell], hackaday favorite from Cemetech did what he always does at Maker Faire: brought some stuff he’s doing with TI graphing calculators.

The TI-84 with GPS made a showing, as did the graphing calculator IRC client. By far the coolest looking calculator was the wooden casemod. It’s a TI-82 put into a (what feels and looks like) a maple enclosure. The buttons are painted on, and despite stuffing consumer electronics into a handmade case, it’s still reasonable portable.

There were more Hackaday fans at the faire, but I’m not sure if anyone can beat the guys from Protopalette. Wait. One guy could. Find me in public sometime and I’ll tell you about that.

The Protopalette is a board with a bunch of lights, buttons, switches, sensors, knobs, servos, and buzzers for electronics prototyping. Think of it as a stylized version of the old ‘parts and springs and wire’ radio shack beginner electronic kits.

Some of the members of the hackerspace with the craziest group narrative, LVL1 in Louisville, made it to the faire. They’re working with GE to create a ‘maker module’ for appliances. It’s called Green Bean, and GE is actually building support for this into some of their fridges, washers, stoves and dishwashers.

There are a few modules already, like a scale that will send out a message when you’re out of milk. It’s an interesting system, and there are already a lot of appliances that support the system.

Pics below.


Filed under: misc hacks

A Very Bright LED Jacket

ศุกร์, 09/26/2014 - 18:00

Last year, [Ytai] went to Burning Man for the first time. He was a bit inexperienced, and lacked the lumens to make him visible on the Playa. This year, he made up for it by building an extra bright LED Jacket.

The jacket consists of 48 LEDs, at 150 lumens each. Each RGB LED module was placed on its own PCB, and controlled by the tiny PIC12F1571 microcontroller. This microcontroller was a great fit since it has three PWM channels (one for each color) and costs 50 cents. Firmware on the PIC allows the boards to be daisy-chained together to reduce wiring. This was done by using a protocol similar to the popular WS2811 LEDs.

Assembling 50 of the boards presented a challenge. This was addressed by using surface mount components, a solder stencil from OSH Stencils, an electric skillet, and a good amount of patience. The final cost of each module was about $3.

With 50 of the boards assembled, a two layer jacket was sewn up. The electronics were sandwiched between these two fabric layers, which gave the jacket a clean look. A wrist mounted controller allows the wearer to select different patterns.

For a full rundown of the jacket, check out the video after the break.


Filed under: led hacks

THP Semifinalist: NSA Away

ศุกร์, 09/26/2014 - 15:00

Back when we started The Hackaday Prize, security, big brother, and the NSA were making headlines every day. Since that time, there has been enough bread and circuses in the news to wipe the consequences of these leaks out of the public consciousness, but work is still being done by hackers and tinkerers the world over to give you the tools to protect your data.

NSA Away is one of these tools. The first part of the project is a standalone key generator that writes the same random bits to a pair of SD cards simultaneously. With their random number generator, this is perfect encryption. The only way to crack the one time pad the team is using for encryption is to 1) use parts of the pad more than once, 2) have a terrible RNG, or 3) do something really stupid like sell the one time pad in a store.

The other part of the build is an Android-based encryption device with a camera, keyboard, SD card reader, and a USB port. This device reads the ‘OTP SD cards’ and reads data with the camera using OCR and decrypts it on the screen. Provided the OTP doesn’t fall into the wrong hands, this is a perfectly secure way to transmit data to anyone.

As far as progress goes, the members of the team have a fully functional pad generator, writing random data to SD cards. This device can also output random bits to a computer as a USB HID device, should you want to transmit your pad over unsecured mediums.

It’s an impressive bit of work, especially in the RNG department. The team is using eight avalanche noise generators in the circuit description. This part of the build isn’t quite working yet, but that’s really not needed for a proof of concept.

The project featured in this post is a quarterfinalist in The Hackaday Prize.


Filed under: The Hackaday Prize

Running Golang on the Intel Edison

ศุกร์, 09/26/2014 - 12:00

While most embedded development is still done in C and/or assembly, some people are working with more modern languages. The team over at Gobot has successfully managed to get Go running on the Intel Edison.

The Go programming language, which has been around for about five years, compiles to machine code like C. It has a number of modern features including concurrency, garbage collection, and packages.

We’ve looked at the Edison on Hackaday before, and even took a detailed look at the hardware. It features a Quark SoC, Bluetooth, and WiFi, which makes it well suited for connected devices.

Getting Go to work on the Edison hardware wasn’t particularly difficult, since it supports the Pentium instruction set and MMX. However, a library was needed to interface with the Edison’s peripherals. The Gobot team whipped up gobot-intel-iot, which makes it easy to work with GPIO, I2C, and PWM.

After the break, the team demos PWM on the Edison using Go.


Filed under: software hacks

A Wrist-Mounted Flamethrower? Sure, Why Not?

ศุกร์, 09/26/2014 - 09:00

There are three types of booths at Maker Faire. The first is the strange corporate booth, like Pepsi ‘revolutionizing fluid intake’ or some such nonsense. That one had the longest line of any booth, in case you’re wondering. The second type of booth is the people you would expect to be there – Atmel, TI, and Makerbot all came out in full force.

The third type of booth were a little hard to find. They’re the ‘show and tell’ spirit of Maker Faire, and [Stephen Hawes] was one of the best. Why? Wrist-mounted flamethrower, that’s why.

The flamethrower is fueled with a propane bottle originally meant for a camping stove, with a microcontroller and pot setup taking care of the height of the flame. Buttons underneath [Stephen]‘s thumb takes care of the propane flow and tazer-based ignitor. The wrist measurement sensor can rescale to adjust the height of the flame to how far the wearer can move their wrist.

All in all, a great project for the Faire, although we did feel a little sorry for the NYC fire marshal that was assigned to [Stephen] for the entire faire. As an aside, we’re applauding [Stephen] for not referencing whatever comic book character has fire shooting out of his hand.


Filed under: wearable hacks

Exposed Clock is Flippin’ Cool

ศุกร์, 09/26/2014 - 06:00

Some hacks are triumphs of cleverness, others…are just cool. [Super Cameraman's] exposed retro flip clock tends toward the latter half of that spectrum—it may not be the most complex, but we’re relieved that for once there isn’t an Arduino crammed into the back of it.

You can buy pared down, exposed flip clocks at museums for an arm and a leg, or you can trudge through eBay and local thrift shops until you come across a cheapo clock radio. [Super Cameraman's] clock cost him exactly $2, and is split into two sections: a clock side and a radio side. Prying off the knobs and popping open the case reveals all the shiny mechanisms and electronics, most of which he trashed. The radio and even the transformer were removed, leaving only the flip clock, which he re-wired directly to the plug—it seems these types of clocks run straight off 120VAC. Check out the video below.

[via reddit]


Filed under: clock hacks

Thermal Printer Brain Transplant is Two Hacks in One

ศุกร์, 09/26/2014 - 03:00

You know how sometimes you just can’t resist collecting old hardware, so you promise yourself that you will get around to working on it some day? [Danny] actually followed through on one of those promises after discovering an old Radio Shack TRS-80 TP-10 thermal printer in one of his boxes of old gear. It looks similar to a receipt printer you might see printing receipts at any brick and mortar store today. The original printer worked well enough, but [Danny] wasn’t satisfied with its 32 character per line limitation. He also wanted to be able to print more complex graphics. To accomplish this goal, he realized he was going to have to give this printer a brain transplant.

First, [Danny] wanted to find new paper for the printer. He only had one half of a roll left and it was 30 years old. He quickly realized that he could buy thermal paper for fax machines, but it would be too wide at 8.5 inches. Luckily, he was able to use a neighbor’s saw to cut the paper down to the right size. After a test run, he knew he was in business. The new fax paper actually looked better than the old stuff.

The next step was to figure out exactly how this printer works. If he was going to replace the CPU, he was going to need to know exactly how it functioned. He started by looking at the PCB to determine the various primary functions of the printer. He needed to know which functions were controlled by which CPU pins. After some Google-Fu, [Danny] was able to find the original manual for the printer. He was lucky in that the manual contained the schematic for the circuit.

Once he knew how everything was hooked up, [Danny] realized that he would need to learn how the CPU controlled all of the various functions. A logic analyzer would make his work much easier, but he didn’t happen to have one lying around. [Danny] he did what any skilled hacker would do. He built his own!

He built the analyzer around an ATMega664. It can sample eight signals every three microseconds. He claims it will fill its 64k of memory in about one fifth of a second. He got his new analyzer hooked up to the printer and then got to work coding his own logic visualization software. This visualization would provide him with a window to the inner workings of the circuit.

Now that he was able to see exactly how the printer functioned, [Danny] knew he would be able to code new software into a bigger and badder CPU. He chose to use another ATMega microcontroller. After a fair bit of trial and error, [Danny] ended up with working firmware. The new firmware can print up to 80 characters per line, which is more than double the original amount. It is also capable of printing simple black and white graphics.

[Danny] has published the source code and schematics for all of his circuits and utilities. You can find them at the bottom of his project page. Also, be sure to catch the demonstration video below.


Filed under: Microcontrollers

THP Semifinalist: B10N1C Yourself

ศุกร์, 09/26/2014 - 00:00

The Hackaday Prize has had a few medical devices make the semifinalist cut, and of course wearables are on the list. How about implantables? That’s what Bionic Yourself 2.0 (or B10N1C) is doing with an implantable microcontroller, battery, and sensor system.

The hardware in B10N1C includes a electromyography sensor for measuring muscle activity, an accelerometer, a vibration motor, RFID reader/writer, temperature sensor, and – get this – a LED bar graph that will shine a light through the skin. That’s something we’ve never seen before, and if you’re becoming a cyborg, it’s a nice feature to have.

As with anything you would implant in your body, safety is a prime consideration for Bionic.the Lithium battery can be overcharged (yes, through a wireless charging setup) to 10V without a risk of fire or explosion, can be hit with a hammer, and can even be punctured. The enclosure is medical grade silicone, the contacts are medical grade stainless steel, and there’s a humidity sensor inside that will radio a message saying its time to remove the device if the moisture level in the enclosure increases.

Because the device is implanted under the skin, being able to recharge and update the code without a physical connection is the name of the game. There’s a coil for wireless charging, and a lot of work is going into over the air firmware updating. It’s an astonishing project, and while most people probably won’t opt for a cyborg implant, it will look really cool.

The project featured in this post is a quarterfinalist in The Hackaday Prize.


Filed under: The Hackaday Prize, wearable hacks

Speakers at Hackaday’s 10th Anniversary

พฤ, 09/25/2014 - 22:36

It is with great pleasure that we are able to announce the final slate of speakers for Hackaday’s 10th Anniversary on October 4th in Pasadena. There are still around 30 tickets left for the conference so get yours now!

The most recently confirmed speaker is a man of many names. [Ryan Clarke] may be better known as [LosT], [1o57], or [Lostboy]. For years he has been driving the flagship contest at DEFCON by generating cryptographic puzzles that run far and deep through the 4-day conference and beyond. His talk will venture into the art and science of putting together these challenges, and the lengths at which determined hackers will go to solve them. His site gets taken over each year for DEFCON, so you might want to explore his Twitter account if you’re looking to learn more about this mysterious figure.

The other four speakers have already been mentioned in the initial announcement and last week’s follow-up. [Steve Collins] will discuss how his early interest in hacking led him to become an engineer at NASA. [Quinn Dunki] will have her scratch-built Veronica computer on hand and explain the adventure of the impressive project. [ThunderSqueak] will help us wrap our minds around the concept of non-binary computing, and [Jon McPhalen] will present the benefits of multi-core embedded processing versus traditional interrupt-based design.

We can’t wait for this amazing afternoon of talks which is just one week from Saturday. We hope to see you there!


Filed under: cons, Featured

Fail of the Week: Battery Packin’

พฤ, 09/25/2014 - 21:01

[NeXT] got himself an IBM ThinkPad TransNote and yeah, we’re pretty jealous. For the uninitiated, the TransNote was IBM’s foray into intelligent note transcription from roughly fifteen years ago. The ThinkPad doesn’t even have to be on to capture your notes because the proprietary pen has 2MB of flash memory. It won an award and everything. Not the pen, the TransNote.

Unfortunately, the battery life is poor in [NeXT]‘s machine. The TransNote was (perhaps) ahead of its time. Since it didn’t last on the market very long, there isn’t a Chinese market for replacement batteries. [NeXT] decided to rebuild the replacement battery pack himself after sending it off with no luck.

The TransNote’s battery pack uses some weird, flat Samsung 103450 cells that are both expensive and rare. [NeXT] eventually found some camera batteries that have a single cell and a charge controller. He had to rearrange the wiring because the tabs were on the same side, but ultimately, they did work. He got the cells together in the right configuration, took steps to prevent shorts, and added the TransNote’s charge controller back into the circuit.

Nothing blew up, and the ThinkPad went through POST just fine. He plugged it in to charge and waited a total of 90 minutes. The charging rate was pretty lousy, though. At 94% charge, the estimated life showed 28 minutes, which is worse than before. What are your thoughts on the outcome and if it were you, what would be the next move?

Fail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.


Filed under: Fail of the Week, Hackaday Columns

Cheap Multimeter Gauges Embedded Idle Time

พฤ, 09/25/2014 - 18:01

How often is your microcontroller actually doing something? You can find out by measuring idle time, but how exactly do you do this? [Jack Ganssle] shows that simple embedded applications can toggle a pin when idle, which can then be measured. More complex applications like those using a Real Time Operation System can do the same by making use of the idle hook. But what can you do to make this toggling pin feedback actually mean something?

His solution is to repurpose an analog multimeter. The meter is interface with the toggle pin and a trimpot calibrates the needle. This way the needle jumps when the processor is busy and returns to zero when idle. What a great tip for getting a little more feedback about what’s going on inside of that black plastic IC package. It’s not surprising to find such a clever hack from one of the Hackaday Prize judges.

While you’re in the analog multimeter aisle you might want to pick up a couple of extras for more alternate data displays.


Filed under: Microcontrollers, tool hacks

Digital Caliper Sacrificed For DRO Project

พฤ, 09/25/2014 - 15:00

In general, machining metal on a lathe or mill takes skill and patience as the accuracy of the cuts are important. To make those accurate cuts, it is important to know where the tool is located and how far it moves. For manual machines, the most basic method of determining position is by using graduated dials mounted on the hand cranks. Although these graduated dials can certainly be accurate, they may be difficult to see and they also require the operator to do math in their head on the fly with every full revolution of the dial. Another option would be a digital read out (DRO) which has an encoder mounted to the moving axes of the machine. This setup displays the exact position of the tool on an easy to read numeric display.

Professional DRO kits for mills and lathes can cost between a few hundred dollars to several thousand dollars.  [Robert] has a lathe, wanted a DRO but didn’t want to shell out serious cash to get it. He built his own for super cheap in an extremely resourceful way…. using a Harbor Freight Digital Caliper. A housing was first fabricated so that the added equipment would not hinder the axis travel of the lathe. The caliper was then cut to length, installed in the housing and the entire assembly was then mounted to the lathe.

It is totally reasonable to use the stock caliper display to read the positional information, however, even these cheap digital calipers have connections for the encoder output data, which can easily be read by a microcontroller. That means it is super simple to hook these low-cost digital calipers up to a display remotely located in a more convenient position.

 


Filed under: tool hacks

THP Semifinalist: A Continuous Wave Radar

พฤ, 09/25/2014 - 12:00

There aren’t many Hackaday Prize entries playing around in RF, save for the handful of projects using off the shelf radio modules. That’s a little surprising to us, considering radio is one of the domains where garage-based tinkerers have always been very active. [Luke] is bucking the trend with a FM continuous wave radar, to be used in experiments with autonomous aircraft, altitude finding, and synthetic aperture radar imaging.

[Luke]‘s radar operates around 5.8-6 GHz, and is supposed to be an introduction to microwave electronics. It’s an extremely modular system built around a few VCOs, mixers, and amplifiers from Hittite, all connected with coax.

So far, [Luke] has all his modules put together, a great pair of cans for the antennas, everything confirmed as working on his scope, and a lot of commits to his git repo.

You can check out [Luke]‘s demo video is available below.

The project featured in this post is a quarterfinalist in The Hackaday Prize.


Filed under: radio hacks

Apollo, the Everything Board

พฤ, 09/25/2014 - 09:00

The best projects have a great story behind them, and the Apollo from Carbon Origins is no exception. A few years ago, the people at Carbon Origins were in school, working on a high power rocketry project.

Rocketry, of course, requires a ton of sensors in a very small and light package. The team built the precursor to Apollo, a board with a 9-axis IMU, GPS, temperature, pressure, humidity, light (UV and IR) sensors, WiFi, Bluetooth, SD card logging, a microphone, an OLED, and a trackball. This board understandably turned out to be really cool, and now it’s become the main focus of Carbon Origins.

There are more than a few ways to put together an ARM board with a bunch of sensors, and the Apollo is extremely well designed; all the LEDs are on PWM pins, as they should be, and there was a significant amount of time spent with thermal design. See that plated edge on the board? That’s for keeping the sensors cool.

The Apollo will eventually make its way to one of the crowdfunding sites, but we have no idea when that will happen. Carbon Origins is presenting at CES at the beginning of the year, so it’ll probably hit the Internet sometime around the beginning of next year. The retail price is expected to be somewhere around $200 – a little expensive, but not for what you’re getting.


Filed under: hardware, Microcontrollers

The TinyG Motion Controller

พฤ, 09/25/2014 - 06:00

When you go to a trade show of any kind, you’re expecting cool demos in the booths. At Maker Faire, there were plenty, but one of the most hypnotic was a robot built around Synthetos’ TinyG motion controller.

The demo was simply a large CNC gantry moving a ball bearing around on a string. The gantry moved in the X and Y axes, and the miniature wrecking ball was spooled and unspooled in the Z axis. The ball move around the space, coming to a complete stop without any swaying. There were even a few clear plastic tubes that the ball fell in, and popped out of without raising or lowering the string. It’s the height of motion controller coolness, all made possible with the TinyG.

The TinyG was one of a few motion control and CNC boards found at the faire. In its base configuration, it has 6 axes of motion control, RS485 to network several boards for crazy machine configurations, and a suitably powerful processor to do everything correctly.


Filed under: cnc hacks

EM Pulser Flings Washers, Side Effects May Include Curing Cancer or Death

พฤ, 09/25/2014 - 03:00

Some folks believe that exposure to electromagnetic pulses helps the human body heal itself (one portion of the [Bob Beck] protocol). [Steffan] is one of those folks and was interested in EMP generation but wasn’t crazy about the several-hundred dollar price tag for professional units. As any determined DIYer would do, he set off to make his own.

This whole thing works by straight-out-of-the-wall 110v AC running through a couple 60 watt light bulbs before moving through a rudimentary rectifier circuit. The DC output from the rectifier charges five 130uF camera flash capacitors. An inductor coil is responsible for generating the EMP and is only separated from the capacitors by a single normally-open momentary switch. Although it is possible to wrap your own coil, [Steffan] decided to use an off the shelf 2.5mH unit normally used for speaker system crossovers. Once the momentary switch is pressed, the energy in the capacitors is discharged through the inductor coil and the EMP is created. To demonstrate that the pulser does indeed work, a metal washer was placed on the inductor coil and the unit fired resulting in the washer being thrown into the air.

[Stephan] did deviate from the some of the online designs he had researched, using 7 capacitors instead of the recommended 5. The result was a firecracker-like discharge sound and melting of the 14 gauge wire. Well, back to 5 caps.


Filed under: Medical hacks

Logicthai Shop

LogicStamp8fx ราคา 180 บาท

USB to TTL module ใช้ชิพ PL2303 ราคา 150 บาท

USB Power module พร้อมสาย USB ราคา 70 บาท

ชุดลงปริ้นท์ freeduinomax232ssAtmega168 ราคา 450 บาท

แผ่นปริ้นท์ freeduinomax232ss เกรด A ราคา 70 บาท

ชุดคิท freeduinomax232ssAtmega168 ราคา 320 บาท

สาย RS232 ราคา 70 บาท DC อะแดปเตอร์ 9 volt ราคา 150 บาท

ค่าส่ง EMS 60 บาท

การใช้งานชุด freeduinomax232ss จะต้องประกอบด้วย ตัวบอร์ด, สาย RS232, อะแดปเตอร์ 9 โวลท์ชนิดที่มีขั้วบวกอยู่ตรงกลาง

ผู้สนใจสั่งซื้อสินค้าส่งเมล์มาที่ sales(at)ลอจิกไทยดอทเนท

สมาชิก ส่งรายการสั่งซื้อและที่อยู่โดยเข้าเมนู contact