Hackaday

Syndicate content Hackaday
Fresh hacks every day
ถูกปรับปรุง 4 hours 53 min ก่อน

First Stab at Motion Sensor to Disconnect a Car Charger

อังคาร, 03/25/2014 - 12:00

 

[Pixel] just sent in this automotive hack which disconnects his car charger when the vehicle stops moving for at least 10 minutes. Why would you need such a thing? The 12V outlet in his vehicle isn’t disconnected when the ignition is turned off. If he leaves a charger plugged in when parking the car, he often returns to a drained battery.

The fritzing diagram tells the story of this hack. He’s using a 7805 to power the Arduino mini. This monitors an ADXL362 accelerometer, starting the countdown when motion is no longer sensed by that chip. At the 10-minute mark the N-channel MOSFET kills the ground side of the outlet. Good for [Pixel] for including a resetable fuse on the hot side. But it was the diode all the way to the left that caught our eye. Turns out this is part of a filtering circuit recommended in a forum post. It’s a Zener that serves as a Transient-Voltage-Suppression diode.

Another comment on that thread brings up the issue we also noticed. The 7805 linear regulator is constantly powered. Do you think putting the uC into sleep and leaving the linear regulator connected is an adequate solution? If not, what would you do differently?


Filed under: transportation hacks

First Stab at Motion Sensor to Disconnect a Car Charger

อังคาร, 03/25/2014 - 12:00

 

[Pixel] just sent in this automotive hack which disconnects his car charger when the vehicle stops moving for at least 10 minutes. Why would you need such a thing? The 12V outlet in his vehicle isn’t disconnected when the ignition is turned off. If he leaves a charger plugged in when parking the car, he often returns to a drained battery.

The fritzing diagram tells the story of this hack. He’s using a 7805 to power the Arduino mini. This monitors an ADXL362 accelerometer, starting the countdown when motion is no longer sensed by that chip. At the 10-minute mark the N-channel MOSFET kills the ground side of the outlet. Good for [Pixel] for including a resetable fuse on the hot side. But it was the diode all the way to the left that caught our eye. Turns out this is part of a filtering circuit recommended in a forum post. It’s a Zener that serves as a Transient-Voltage-Suppression diode.

Another comment on that thread brings up the issue we also noticed. The 7805 linear regulator is constantly powered. Do you think putting the uC into sleep and leaving the linear regulator connected is an adequate solution? If not, what would you do differently?


Filed under: transportation hacks

Bookworm Playing Bot Tests Programmer’s OCR Skills

อังคาร, 03/25/2014 - 09:01

Check out this brainy bot with [Jari] whipped up to dominate the Bookworm Deluxe scoreboard. The bot runs on top of a win32 machine, pulling screenshots to see the game board and simulating mouse clicks to play. The video after the jump shows that it plays like a champ, but it took some doing to get this far and [Jari] took the time to share all of the development details.

The hardest part of writing these types of bots is recognizing the game pieces. Check out all of the animation that’s going on in the still shot above… a lot of the tiles are obscured, there are different colors, and the tiles themselves shift as the bot spells and submits each word.

After some trial and error [Jari] settled on an image pre-processor which multiplies pixel values by themselves four times, then looks at each pixel with a 1/6 threshold to produce a black and white face for each tile. From there a bit of Optical Character Recognition compares each tile to a set of known examples. This works remarkably well, leading into the logic and dictionary part of the programming challenge.

Do you think this was easier or harder than the Bejeweled Blitz bot. That one was looking for specific pixel regions, this one is basically a focused roll-your-own OCR script.

 


Filed under: video hacks

Rebuilding A 50,000 Volt Power Supply

อังคาร, 03/25/2014 - 06:01

The theory behind building power supplies is relatively easy, but putting it into practice and building a multi-kilovolt supply is hard. A big transformer in air will simply spark to itself, turning what could be something very cool into something you just don’t want to be around. [glasslinger] over on YouTube is an expert at this sort of thing, as shown in his 50,000 Volt power supply build. That’s a 55 minute long video, and trust us: it’s worth every minute of your time.

[glasslinger] began his build by taking an old 15,000 Volt neon sign transformer and repurposing the coils and cores for his gigantic 50,000 volt transformer. There was a small problem with this little bit of recycling: the neon sign transformer was potted with tar that needed to be removed.

To de-pot the transformer, [glasslinger] made a small oven from a helium tank, melting all the goo out with an old school gasoline torch. From there, hours and hours of cleaning ensued.

The transformer cores were cleaned up and cut down, and a new primary wound. A small-scale test (shown above) using the old secondaries resulted in a proof of concept with some very large sparks. The next step was putting the entire transformer in a box and filling it with transformer oil.

The money shot for this build comes when [glasslinger] assembles his transformer, rectifier, and all the other electronics into a single, surprisingly compact unit and turns standard wall power into a 50,000 Volt spark. You can literally smell the ozone from the video.

 


Filed under: misc hacks

Soft Robotics, Silicone Rubber, And Amazing Castings

อังคาร, 03/25/2014 - 03:00

Most of the robotics projects we see around here are heavy, metallic machines that move with exacting precision with steppers, servos, motors, and electronics. [Matthew] is another breed of roboticist, and created a quadruped robot with no hard moving parts.

[Matthew] calls his creation the Glaucus, after the blue sea slug Glaucus atlanticus. Inside this silicone rubber blob are a series of voids, allowing compressed air to expand the legs, gently inching Glaucus across a table under manual or automatic control.

Even though no one seems to do it, making a few molds for casting on a 3D printer is actually pretty easy. [Matthew] is taking this technique to an extreme, though: First, a mold for the interior pressure bladders are printed, then a positive of this print made in silicone rubber. These silicone molds – four of them, for the left, right, top and bottom – are then filled with wax, and the wax parts reassembled inside the final ‘body’ mold. It’s an amazing amount of work to make just one of these soft robots, but once the molds and masters are made, [Matthew] can pop out a soft robot every few hours or so.

There’s a lot more info on Glaucus over on the official site for the build, and a somewhat simpler ‘compressed air and silicone rubber’ tentacle [Matthew] built showing off the mechanics. Video below.

 


Filed under: 3d Printer hacks, robots hacks

The Gathering: Shanghai’s Hackaday Community

อังคาร, 03/25/2014 - 00:01

It happened! The Gathering crossed the Pacific and landed in Shanghai on Thursday, March 20th. It took place at the venue ironically called ‘Abbey Road’ (it’s the only one we could find on such a short notice) and more than 150 people showed up. The whole scene had a huge Chatsubo feel too it – an eclectic mix of local and expat hackers and engineers, professors, students and all sorts of industry mercenaries from around the world. And everyone with skull-and-wrenches t-shirt or a sticker on.

I can only imagine what Chinese police would think if they happened to drop by. Not to mention if they asked how in the world did all these ‘anarchist’ t-shirts enter the country.

But that’s another story…

We met a lot of exciting people and heard all sorts of weird tales, such as the (off-the-record) one about the real reasons behind certain well-known laptop manufacturer’s batteries bursting into flames. We also got a lot of great advice on smuggling electronic components out of China and other everyday tips & tricks.

My favorite conversation was with [Alexander Klink] on his research in Denial of Service attacks using algorithmic complexity of collision resolution in (a priori known) hash functions. Though the original paper is more than two years old, its takeaways can still have a huge impact on all sorts of software and hardware devices out there.

The general theme of the night was how exciting it is to live in a place like Shanghai, where rapid urban growth and access to manufacturing resources meets a blossoming technology and art scene. It is even more so thanks to places like Xin Che Jian, which make being a “hacker” a socially acceptable thing on the other side of the Great Firewall.

That said, reading all of Hackaday content still requires a proxy.


Filed under: Featured

3 Cheap Hood/Hatchback/Topper Mods to Save Your Noggin

จันทร์, 03/24/2014 - 21:01

This is a mod more than a hack but any time you can alter original equipment to maintain its usability is a win-win scenario for you and the environment. Everyone has or knows somebody that has a vehicle and most vehicles nowadays have some type of hatchback or hood where the support solution is gas filled struts. Inevitably these gas filled struts fail with age and the failure is accelerated in hotter or colder climates. If you ever had to replace these items you know they can cost a minimum of $20 to as much as $60 a piece. Most vehicles require two, four or even eight of these costly little devices.

[Brian] from Briansmobile1 YouTube channel documented three simple and low cost solutions. We all probably know of the vice clamp solution but that is cumbersome and still an expensive solution which is not always very handy or fast. Another solution is to cut a piece of rubber hose in a kind of special way so it is easy to put on and take off the shaft and dangles from a string so it’s always available. The best solution was to use a hitch pin also connected to a string or wire. To make the hitch pin work you have to grind a couple of notches on either side of the lift shaft at just the right spot so the pin can be snapped on and prevent the shaft from retracting at your selected height.

We are sure these solutions will come in handy at some time in most everyone’s driving career. Just after the break we will link to all three of [Brian’s] handy videos on gas strut fix solutions. And if you do your own automotive repair we can definitely recommend [Brian’s] channel of over 600 vehicle repair and maintenance videos which normally come with a dose of philosophy and humor.

Hitch Pin

Hose

Vise Grip


Filed under: how-to, repair hacks

Embeded Sieve of Eratosthenes: Hunting Primes on ARM

จันทร์, 03/24/2014 - 18:01

I ended up with just enough time over the weekend to pull together a quick project. I implemented the Sieve-of-Eratosthenes on an ARM chip.

If you haven’t heard of the Sieve of Eratosthenes then you really need to work your way through Project Euler. That’s where I first learned about this method of finding prime numbers. You begin with a list of all numbers, find a prime, then remove all multiples of that prime from the list. The real trick with doing it on a microcontroller is to figure out how to store a large list of numbers in a limited space. The gist of my method was to use a boolean array (I call it a bit-packed array but that may be the wrong way of saying it). The details are found in my project linked at the top.

‘Why?’ is almost always the wrong question to ask around here. But in this case, I did this because I wanted to try out the Bit Banding functionality of the ARM core. These chips have alias addresses that map to a single bit in the SRAM and also some of the peripheral registers. This allows read or write access for a single bit using a single instruction. Turns out that one side effect of 32-bit architecture is having addresses to burn.


Filed under: ARM

Mechanical Iris Will Make You Want a Laser Cutter Even More

จันทร์, 03/24/2014 - 15:00

Mechanical irises are very intricately designed mechanisms that are mesmerizing to see in action — and if you have a laser cutter, you could make one in less than 10 minutes.

Our “Teacher of Science”, Instructables’ user [NTT] has revised a previous Instructables design on a mechanical iris to improve it. The original design used three layers of components and dowel pins for every joint. What [NTT] has done is reduced this to two layers, and eliminated half of the pins required by designing clever circular cutouts. The result is a very slick mechanical iris that is very easy and quick to build — provided you have the tools.

Stick around to see the original iris open and close — unfortunately there’s no video of the new design — but we think you can imagine the differences.

Or alternatively you could 3D print a version of it!

No laser cutter, or 3D printer? We feel your pain. Luckily there is also a cardboard version of it you can make without any fancy tools!


Filed under: cnc hacks, laser hacks

Mechanical Iris Will Make You Want a Laser Cutter Even More

จันทร์, 03/24/2014 - 15:00

Mechanical irises are very intricately designed mechanisms that are mesmerizing to see in action — and if you have a laser cutter, you could make one in less than 10 minutes.

Our “Teacher of Science”, Instructables’ user [NTT] has revised a previous Instructables design on a mechanical iris to improve it. The original design used three layers of components and dowel pins for every joint. What [NTT] has done is reduced this to two layers, and eliminated half of the pins required by designing clever circular cutouts. The result is a very slick mechanical iris that is very easy and quick to build — provided you have the tools.

Stick around to see the original iris open and close — unfortunately there’s no video of the new design — but we think you can imagine the differences.

Or alternatively you could 3D print a version of it!

No laser cutter, or 3D printer? We feel your pain. Luckily there is also a cardboard version of it you can make without any fancy tools!


Filed under: cnc hacks, laser hacks

Monitoring your Gas Consumption with a JeeNode and a nRF24L01+

จันทร์, 03/24/2014 - 12:00

[Sven337] just blogged about a gas consumption monitoring setup he finished not long ago. As his gas meter was located outside his apartment and nowhere near any electrical outlet, a battery-powered platform that could wirelessly send the current consumption data to his Raspberry Pi was required. His final solution therefore consists of a JeeNode coupled with the well known nRF24L01+ wireless transmitter, powered by 3 supposedly dead alkaline batteries.

[Sven337] carefully looked at the different techniques available to read the data from his meter. At first he had thought of using a reflective sensor to detect the number 6 which (in France at least) is designed to reflect light very well. He then finally settled for a magnetic based solution, as the Actaris G4 gas meter has a small depression intended for magnetic sensors. The PCB you see in the picture above therefore has a reed sensor and a debug LED. The four wires go to a plastic enclosure containing the JeeNode, a couple of LEDs and a reset switch. Using another nRF24L01, the Raspberry Pi finally receives the pulse count and reports it to an eeePC which takes care of the storage and graphing.


Filed under: hardware, Raspberry Pi

Monitoring your Gas Consumption with a JeeNode and a nRF24L01+

จันทร์, 03/24/2014 - 12:00

[Sven337] just blogged about a gas consumption monitoring setup he finished not long ago. As his gas meter was located outside his apartment and nowhere near any electrical outlet, a battery-powered platform that could wirelessly send the current consumption data to his Raspberry Pi was required. His final solution therefore consists of a JeeNode coupled with the well known nRF24L01+ wireless transmitter, powered by 3 supposedly dead alkaline batteries.

[Sven337] carefully looked at the different techniques available to read the data from his meter. At first he had thought of using a reflective sensor to detect the number 6 which (in France at least) is designed to reflect light very well. He then finally settled for a magnetic based solution, as the Actaris G4 gas meter has a small depression intended for magnetic sensors. The PCB you see in the picture above therefore has a reed sensor and a debug LED. The four wires go to a plastic enclosure containing the JeeNode, a couple of LEDs and a reset switch. Using another nRF24L01, the Raspberry Pi finally receives the pulse count and reports it to an eeePC which takes care of the storage and graphing.


Filed under: hardware, Raspberry Pi

Humble Beginnings of a Pick and Place Machine

จันทร์, 03/24/2014 - 09:00

[Pete's] invented a product called an AIR Patch Cable designed to interface with an airplane’s intercom, and is looking to manufacture and assemble them himself — unfortunately, the circuit boards are tiny, and SMD components aren’t exactly the easiest to install. So he decided to build a pick and place machine to do it for him!

It’s not finished yet, but [Pete] has reached a major milestone — he’s finished the base CNC machine aspect of it. He opted for a kit build for the major mechanical components, the Shapeoko 2 — its a solid design and if you decided to make something from scratch it’d probably cost much more and take a lot longer.

From there he began selecting his electronics individually. He’s chosen the Big Easy Driver by Sparkfun to control his stepper motors, which supports a maximum size of NEMA 17 steppers, so he bought five of those too. To control it all, he’s using LinuxCNC which is an excellent choice — and if you’re not crazy about Linux, you can actually download Ubuntu 10.04 with LinuxCNC pre-installed for you to make it super easy — you’ll just need an old dedicated PC to use.

Once everything was setup, he wrote a quick program to control his future pick and place machine — he strapped a pen onto the Z-axis and it scratched out its first word: “Gangsta”. Cause you know, G-Code. Right? Yeah. Anyway, we’re quite excited to see how this progresses.

To see a pick & place machine that’s already functioning, check out this beautiful piece of work!


Filed under: cnc hacks

Hackaday Links: March 23, 2014

จันทร์, 03/24/2014 - 06:01

[Jack] sent us a link to a Metropolitan Museum of Art video showing off a mechanized desk that plays music and has a ton of hidden compartments. Furniture makers of yore built hidden compartments in furniture all the time. After all, there weren’t credit cards back in the day and you had to keep important documents, cash, and everything else on hand. What strikes us is that this mates woodworking of the highest caliber with precision mechanics.

Before you get rid of that old box spring, ask yourself if you need to store dimensional goods. If you rip off the outer fabric, the network of wire inside makes a reasonable lumber rack.

And since we’re talking trash, we enjoyed seeing this water bottle wire spool minder which [Daniel] sent our way.

You know those portable DVD players you can hang from a headrest to entertain the kids on long trips? Well [John's] broke, and like chasing the dragon, once you’re hooked on watching videos during car trips there’s no going back. Luckily he was able to throw a Raspberry Pi at the problem. He now has a portable OpenElec XBMC device controlled via a smartphone.

[Jaromir] posted some breakout board footprints that you can use. It’s not the footprints that impress us, but the idea of using them to fill up board space when spinning a new PCB. [Thanks Sarah]

LEGO Gachapon. Need we say more? Okay, truth be told we had to look it up too; Wikipedia says it’s spelled Gashapon. These are coin-operated machines that dispense toys inside of plastic capsules. This one’s made of LEGO and it’s awesome.

[Mikhail] actually built his own ballast resistors for some HeNe laser tubes. This is a bit easier than it might sound at first, as they are much lower power than the tubes used in cutters. But none-the-less an interesting, and successful, experiment.


Filed under: Hackaday Columns, Hackaday links

This Machine Sucks Balls

จันทร์, 03/24/2014 - 03:00

The best career choice anyone could ever make – aside from the richest astronaut to ever win the Super Bowl – is the designer of the kinetic art installations found in science centers that roll billiard balls along tracks, around loops, and through conveyors in a perpetual display of physics and mechanics. [Niklas Roy] isn’t quite at that level yet, but he has come up with a new twist on an old idea: a machine that literally sucks balls from a ball pit into transparent tubes, sending them whizzing around the installation space.

The installation consists of eighty meters of plastic tubing suspended in the staircase of Potocki Palace in Kraków. Electronically, the installation is extremely simple; a PIR sensor turns on a vacuum cleaner whenever someone is in the ball pit. This sucks balls up through a hose, around the space, and into a bin suspended over the pit. Pull a lever, and the balls stored in the bin are dispensed onto the person vacuuming up thousands of balls below.

Image source, with video below.


Filed under: misc hacks

Say Watt? A Talking Multimeter?

จันทร์, 03/24/2014 - 00:00

After a request from one of his friends, [Mastro Gippo] managed to put together a talking multimeter to be used by blind persons working in electronics. He wanted a feature-rich meter that had serial output, and recalling this Hackaday article from a few years back led him to find a DT-4000ZC on eBay, which has serial output on a 3.5mm jack. (Though, he actually recommends this knockoff version which comes with excellent documentation).

It turns out there aren’t many talking meter options available other than this expensive one and a couple of discontinued alternatives. [Mastro Gippo] needed to start from scratch with the voice synthesizer, which proved to be as easy as recording a bunch of numbers and packing them onto an SD card to be read by an Arduino running the SimpleSDAudio library.

He found a small, battery-powered external speaker used for rocking out with music on cell phones and hooked it up to the build, stuffing all the electronics into an aluminum case. Stick around after the jump for a quick video of the finished product!


Filed under: tool hacks

A Hexacopter with FPV

อาทิตย์, 03/23/2014 - 21:00

[Robert's] been hard at work becoming a hexacopter expert over the past two years, and he’s offered up a retrospective of his multi rotor build experience since he first clicked the “buy” button on Hobbyking. He’s come a long way from his first build, which used inexpensive carbon rods and 3D-printed parts for a frame, supported by scrap wood and hot glue. It met its end in his car; exposed to direct sunlight, the 3D-printed components melted.

The latest iteration—seen above on the right—is a complete redesign, with a laser-cut frame that dramatically reduced the overall weight and new “Donkey” motors off Hobbyking. It’s strong enough to lift a 1.6kg (3.5lbs) stuffed animal suspended from a rope! Most recently [Robert] has worked out streaming first-person video after fitting a camera to the hexacopter via a 3D-printed attachment and pairing the experience with Zeiss Cinemizer 3D glasses. He still has some bugs to work out, namely screws loosening from vibrations and adding a HUD to the display so he’ll know when the battery levels are low. You can see the poor teddy bear getting hanged along with some other videos, including the first-person video flight, after the break.


Filed under: toy hacks

DIY CNC Dust Collection Really Sucks!

อาทิตย์, 03/23/2014 - 18:00

CNC Routers are great. If you’ve ever used one you know this but you also know that they will cover the machine and everything around it with a layer of dust. It is certainly possible to use a shop vac to suck up the dust coming from the router, however, the only problem with that is the shop vac’s filter will clog with dust and lose suction, defeating the intent of your vac system.

[Mike Douglas] was ready to step up his CNC game and decided to make his own dust separator. This design is extremely simple and only uses a couple 5 gallon buckets, a few PVC fittings and pieces of wood. To keep the cost down and the style up, the accompanying ‘shop-vac’ is also made from 5 gallon bucket with a vacuum lid. The project is well documented so head over to his site and check out the build process.

A dust separator does exactly what its name implies, it separates the dust and debris from the air before entering the vacuum. The following diagram shows how it works: First, a vacuum creates low-pressure inside the dust separator. That low-pressure draws the dust-filled air into the dust separator. The inlet tube directs the incoming air tangent to the circular chamber. Large debris falls quickly down past the baffle and into the collection chamber. The dust enters and is thrown against the walls of the separator as it spins around. While the dust is traveling around the circumference of the separator, gravity pulls it down into the collection chamber. The now much-cleaner air then travels up through the outlet to the vacuum.

Now that we have a dust separator doing its job, would you want to stand beside your CNC machine holding the vacuum hose collecting the newly created dust? Probably not. Neither did [Gerg], and that is why he made a dust shoe for his ShopBot. It is made from scrap polycarbonate that was kicking around the shop. There are two main components of the design, the top part that attaches to the router and the bottom part that has the skirt. The bottom piece attaches to the top with magnets which allows the skirt to be removed quickly so that the tool bit can be changed easily. And in case you want to make your own dust shoe, [Gerg] has made the dxf files available.


Filed under: cnc hacks, tool hacks

Learning Assembly with a Web Based Assembler

อาทิตย์, 03/23/2014 - 15:00

Very few people know assembly. [Luto] seeks to make learning assembly just a little bit easier with his “fully functional web-based assembler development environment, including a real assembler, emulator and debugger.”

These days, you can be a microcontroller expert without knowing a thing about assembly. While you don’t NEED to know assembly, it actually can help you understand quite a bit about embedded programming and how your C code actually works. Writing a small part of your code in assembly can reduce code size and speed things up quite a bit. It also can result in some very cool projects, such as using Java to program microcontrollers.

With high quality example code, it is very easy to get started learning assembly. The emulator consists of a microcontroller with 32 registers, hooked up to three LEDs, two buttons, and a potentiometer. This is way better than painfully learning assembly on real hardware. Be sure to check out the online demo! Being able to step through each line of code and clearly see the result help make assembly easier to use and understand. It would be great to see this kind of tool widely adopted in engineering programs.

Have you used assembly in any of your projects? Let us know how it went and why you choose to use assembly


Filed under: Microcontrollers

Hackaday At MakeDC

อาทิตย์, 03/23/2014 - 12:05

Last Wednesday, our Hackaday travels took us to the Washington, DC area for a visit to NOVA Labs near Dulles and a yet-to-be opened Metro stop. Also on our itinerary was a visit to MakeDC, an informal get together for people around the nation’s capitol to show off their latest projects and builds.

The highlight of the evening was a pair of talks from [Julian] and [Taylor] on a project they did for work: a social cooler, or a locked box holding cool drinks that will only open when enough people send a text to a certain number. We’ve got [Julian]‘s talk on video, but despite our fancy new camera gear for this sorta thing, [Taylor]‘s demo of what an Electric Imp can do was lost to the digital wastes.

Aside from [Julian]‘s talk on APIs and [Taylor]‘s talk on the Electric Imp, there were a few impromptu presentations from the attendees. One of the most thorough was the duo from Shiny & Jackal Cosplay, crafters of EVA foam and LEDs. Truth be told, Hackaday doesn’t see many of these ‘softer’, cosplay and prop making builds in the tip line, and that’s a shame; the amount of skill that goes into these costumes is at least as equal as a woodsmith that can build fine furniture using only hand tools.

Perhaps a little premature, but TechShop is opening a new location in Arlington, VA at the end of the month. The GM [Addam Hall] was there scoping out the hacks and letting the attendees know there’s going to be a huge, awesome shop that’s down town in Crystal City. Close enough to public transportation, anyway, because anyone who drives in DC is certifiable.

The last item of note isn’t a build yet, but it’s shaping up to be pretty cool. It’s BRWRY – pronounced, ‘brewery’ – and will be a semi-automated beer making machine. Robots and beer, what can’t you love?

We’d like to thank [Zach], [Julian], [Taylor], and all the other guys from iStrategyLabs for putting together a nice evening of hanging out, drinking beer, eating pizza, and talking about what you’ve built. We had a great time, and we’re looking forward to the next one, as well as any other similar get together in other cities.


Filed under: Featured

Logicthai Shop

LogicStamp8fx ราคา 180 บาท

USB to TTL module ใช้ชิพ PL2303 ราคา 150 บาท

USB Power module พร้อมสาย USB ราคา 70 บาท

ชุดลงปริ้นท์ freeduinomax232ssAtmega168 ราคา 450 บาท

แผ่นปริ้นท์ freeduinomax232ss เกรด A ราคา 70 บาท

ชุดคิท freeduinomax232ssAtmega168 ราคา 320 บาท

สาย RS232 ราคา 70 บาท DC อะแดปเตอร์ 9 volt ราคา 150 บาท

ค่าส่ง EMS 60 บาท

การใช้งานชุด freeduinomax232ss จะต้องประกอบด้วย ตัวบอร์ด, สาย RS232, อะแดปเตอร์ 9 โวลท์ชนิดที่มีขั้วบวกอยู่ตรงกลาง

ผู้สนใจสั่งซื้อสินค้าส่งเมล์มาที่ sales(at)ลอจิกไทยดอทเนท

สมาชิก ส่งรายการสั่งซื้อและที่อยู่โดยเข้าเมนู contact